什么是第三代半导体?

第三代半导体是以碳化硅SiC、氮化镓GaN为主的宽禁带半导体材料,具有高击穿电场、高饱和电子速度、高热导率、高电子密度、高迁移率、可承受大功率等特点。 

一、二、三代半导体什么区别?

一、材料:


第一代半导体材料,发明并实用于20世纪50年代,以硅(Si)、锗(Ge)为代表,特别是Si,构成了一切逻辑器件的基础。我们的CPU、GPU的算力,都离不开Si的功劳。


第二代半导体材料,发明并实用于20世纪80年代,主要是指化合物半导体材料,以砷化镓(GaAs)、磷化铟(InP)为代表。其中GaAs在射频功放器件中扮演重要角色,InP在光通信器件中应用广泛……


而第三代半导体,发明并实用于本世纪初年,涌现出了碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石(C)、氮化铝(AlN)等具有宽禁带(Eg>2.3eV)特性的新兴半导体材料,因此也被成为宽禁带半导体材料。

二、带隙: 


第一代半导体材料,属于间接带隙,窄带隙;第二代半导体材料,直接带隙,窄带隙;第三代半导体材料,宽禁带,全组分直接带隙。 和传统半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。

三、应用:


第一代半导体材料主要用于分立器件和芯片制造;


第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,也是制作高性能微波、毫米波器件的优良材料,广泛应用在微波通信、光通信、卫星通信、光电器件、激光器和卫星导航等领域。


第三代半导体材料广泛用于制作高温、高频、大功率和抗辐射电子器件,应用于半导体照明、5G通信、卫星通信、光通信、电力电子、航空航天等领域。第三代半导体材料已被认为是当今电子产业发展的新动力。


碳化硅(SiC)(第三代)具有高临界磁场、高电子饱和速度与极高热导率等特点,使得其器件适用于高频高温的应用场景,相较于硅器件(第一代),可以显著降低开关损耗。


因此,SiC可以制造高耐压、大功率电力电子器件如MOSFET、IGBT、SBD等,用于智能电网、新能源汽车等行业。与硅元器件(第一代)相比,氮化镓(GaN)(第三代)具有高临界磁场、高电子饱和速度与极高的电子迁移率的特点,是超高频器件的极佳选择,适用于5G通信、微波射频等领域的应用。 

第三代半导体材料具有抗高温、高功率、高压、高频以及高辐射等特性,相比第一代硅(Si)基半导体可以降低50%以上的能量损失,同时使装备体积减小75%以上。


第三代半导体属于后摩尔定律概念,制程和设备要求相对不高,难点在于第三代半导体材料的制备,同时在设计上要有优势。

第三代半导体现状

由于制造设备、制造工艺以及成本的劣势,多年来第三代半导体材料只是在小范围内应用,无法挑战Si基半导体的统治地位。 目前碳化硅(SiC)衬底技术相对简单,国内已实现4英寸量产,6英寸的研发也已经完成。


氮化镓(GaN)制备技术仍有待提升,国内企业目前可以小批量生产2英寸衬底,具备了4英寸衬底生产能力,并开发出6英寸样品。

第三代半导体的机遇

在5G和新能源汽车等新市场需求的驱动下,第三代半导体材料有望迎来加速发展。


随着5G、新能源汽车等新市场出现,硅(Si)基半导体的性能已无法完全满足需求,碳化硅(SiC)和氮化镓(GaN),即第三代半导体的优势被放大。


另外,制备技术进步使得碳化硅(SiC)和氮化镓(GaN)器件成本不断下降,碳化硅(SiC)和氮化镓(GaN)的性价比优势将充分显现, 第三代半导体未来核心增长点碳化硅(SiC)和氮化镓(GaN)有各自的优势领域。

碳化硅(SiC)

常被用于功率器件,适用于600V下的高压场景,广泛应用于新能源汽车、充电桩、轨道交通、光伏、风电等电力电子领域。新能源汽车以及轨道交通两个领域复合增速较快,有望成为SiC市场快速增长的主要驱动力。预计到2023年,SiC功率器件的市场规模将超过15亿美元,年复合增长率为31%。

 1、【新能源汽车】


在新能源汽车领域,碳化硅(SiC)器件主要可以应用于功率控制单元、逆变器、车载充电器等方面。SiC功率器件轻量化、高效率、耐高温的特性有助于有效降低新能源汽车系统成本。 

2018年特斯拉Model 3采用了意法半导体生产的SiC逆变器,是第一家在主逆变器中集成全SiC功率模块的车企。 

以Model 3搭载的SiC功率器件为例,其轻量化的特性节省了电动汽车内部空间,高效率的特性有效降低了电动汽车电池成本,耐高温的特性降低了对冷却系统的要求,节约了冷却成本。 

此外,近期新上市的比亚迪汉EV也搭载了比亚迪自主研发并制造的高性能SiC-MOSFET 控制模块。

 2、【轨道交通】


在轨道交通领域,SiC器件主要应用于轨交牵引变流器,能大幅提升牵引变流装置的效率,符合轨道交通绿色化、小型化、轻量化的发展趋势。 

近日完成调试的苏州3号线0312号列车是国内首个基于SiC变流技术的牵引系统项目。采用完全的SiC半导体技术替代传统IGBT技术,在提高系统效率的同时降低了噪声,提升了乘客的舒适度。 

氮化镓(GaN)

侧重高频性能,广泛应用于基站、雷达、工业、消费电子领域:


1、【5G基站】


GaN射频器件更能有效满足5G高功率、高通信频段的要求。5G基站以及快充两个领域复合增速较快,有望成为GaN市场快速增长的主要驱动力。基于GaN工艺的基站占比将由50%增至58%,带来大量GaN需求。

预计到2022年,氮化镓(GaN)器件的市场规模将超过25亿美元,年复合增长率为17%。


2、【快充】


GaN具备导通电阻小、损耗低以及能源转换效率高等优点,由GaN制成的充电器还可以做到较小的体积。安卓端率先将GaN技术导入到快充领域,随着GaN生产成本迅速下降,GaN快充有望成为消费电子领域下一个杀手级应用。预计全球GaN功率半导体市场规模从2018年的873万美元增长到2024年的3.5亿美元,复合增长率达到85%。 

2019年9月,OPPO发布国内首款GaN充电器SuperVOOC 2.0,充电功率为65W;2020年2月,小米推出65W GaN充电器,体积比小米笔记本充电器缩小48%,并且售价创下业内新低。


随着GaN技术逐步提升,规模效应会带动成本越来越低,未来GaN充电器的渗透率会不断提升。

 中国三代半导体材料中和全球的差距

一、中国在第一代半导体材料,以硅(Si)为代表和全球的差距最大。


1、生产设备:几乎所有的晶圆代工厂都会用到美国公司的设备,2019年全球前5名芯片设备生产商3家来自美国;而中国的北方华创、中微半导体、上海微电子等中国优秀的芯片公司只是在刻蚀设备、清洗设备、光刻机等部分细分领域实现突破,设备领域的国产化率还不到20%。


2、应用材料:美国已连续多年位列第一,我国的高端光刻胶几乎依赖进口,全球5大硅晶圆的供应商占据了高达92.8%的产能,美国、日本、韩国的公司具有垄断地位。3、生产代工:2019年台积电市场占有率高达52%,韩国三星占了18%左右,中国最优秀的芯片制造公司中芯国际只占5%,且在制程上前面两个相差30年的差距。

二、中国第二代半导体材料代表的砷化镓(GaAs)已经有突破的迹象。


1、砷化镓晶圆环节:根据Strategy Analytics数据,2018年前四大砷化镓外延片厂商为IQE(英国)、全新光电(VPEC,台湾)、住友化学(Sumitomo Chemicals,日本)、英特磊(IntelliEPI,台湾),市场占有率分别为54%、25%、13%、6%。CR4高达98%。 

2、在砷化镓晶圆制造环节(Foundry+IDM):台湾系代工厂为主流,稳懋(台湾)一家独大,占据了砷化镓晶圆代工市场的 71%份额,其次为宏捷(台湾)与环宇(GCS,美国),分别为9%和8%。


3、从砷化镓产品来看(PA为主),全球竞争格局也是以欧美产商为主,最大Skyworks(思佳讯),市场占有率为30.7%,其次为Qorvo(科沃,RFMD和TriQuint合并而成),市场份额为28%,第三名为Avago(安华高,博通收购)。这三家都是美国企业。


在砷化镓三大产业链环节:晶圆、晶圆制造代工、核心元器件环节,目前都以欧美、日本和台湾厂商为主导。中国企业起步晚,在产业链中话语权不强。


不过从三个环节来看,已经有突破的迹象。如华为就是将手机射频关键部件PA通过自己研发然后转单给三安光电代工的。 

4、中国在以氮化镓(GaN)和碳化硅(SiC)为代表第三代半导体材料方面有追赶和超车的良机。


由于第三代半导体材料及应用产业发明并实用于本世纪初年,各国的研究和水平相差不远,国内产业界和专家认为第三代半导体材料成了我们摆脱集成电路(芯片)被动局面,实现芯片技术追赶和超车的良机。


就像汽车产业,中国就是利用发展新能源汽车的模式来拉近和美、欧、日系等汽车强国的距离的,并且在某些领域实现了弯道超车、换道超车的局面。三代半材料性能优异、未来应用广泛,如果从这方面赶超是存在机会的。

中国三代半导体材料相关公司

发表评论

邮箱地址不会被公开。 必填项已用*标注